联合学习是一种在网络边缘训练机器学习模型的方法以及数据隐私问题。这种学习范式需要对设备异质性和数据异质性的鲁棒算法。本文提出MODFL作为联合学习框架,将模型分为配置模块和操作模块,从而实现了各个模块的联合学习。这种模块化方法使从一组异质设备以及用户产生的非IID数据中提取知识。该方法可以看作是通过个性化层FEDPER框架来解决数据异质性的范围的联合学习的扩展。我们表明,使用CNN的MODFL优于CIFAR-10和STL-10的非IID数据分区的FEDPER。我们在使用RNN的Hapt,RWHAR和WISDM数据集的时间序列数据上的结果尚无定论,我们认为所选数据集并未突出MODFL的优势,但在最坏的情况下,它和FedPer一样。
translated by 谷歌翻译
背景:精确诊断颅底肿瘤对于提供个性化的手术治疗策略至关重要。由于肿瘤多样性和缺乏术中病理资源,术中诊断可能具有挑战性。目的:开发独立且平行的术中病理学工作流程,可以使用无标签的光学成像和人工智能提供快速准确的颅底肿瘤诊断。方法:我们使用了基于光纤激光,无标签,非消费性,高分辨率显微镜方法($ <$ <$ <$ <$ 60秒,每1 $ \ times $ 1 mm $ $^\ text {2} $),称为刺激的拉曼组织学(SRH),以对颅底肿瘤患者的连续多中心队列进行成像。然后,使用三种表示学习策略:跨渗透性,自我监督的对比度学习和监督对比度学习,使用SRH图像来训练卷积神经网络(CNN)模型。我们训练有素的CNN模型在持有的多中心SRH数据集上进行了测试。结果:SRH能够成像良性和恶性颅底肿瘤的诊断特征。在三种表示策略中,有监督的对比度学习最有效地学习了每种颅底肿瘤类型的独特和诊断SRH图像特征。在我们的多中心测试集中,跨渗透性达到了91.5%的总体诊断准确性,自我监督的对比度学习为83.9%,并且有监督的对比度学习为96.6%。我们训练有素的模型能够鉴定出肿瘤正常的边缘,并检测整个SRH图像中微观肿瘤浸润的区域。结论:具有训练有素的人工智能模型的SRH可以对颅底肿瘤标本进行快速准确的术中分析,以告知手术决策。
translated by 谷歌翻译
Fast and easy handheld capture with guideline: closest object moves at most D pixels between views Promote sampled views to local light field via layered scene representation Blend neighboring local light fields to render novel views
translated by 谷歌翻译
Coronary Computed Tomography Angiography (CCTA) provides information on the presence, extent, and severity of obstructive coronary artery disease. Large-scale clinical studies analyzing CCTA-derived metrics typically require ground-truth validation in the form of high-fidelity 3D intravascular imaging. However, manual rigid alignment of intravascular images to corresponding CCTA images is both time consuming and user-dependent. Moreover, intravascular modalities suffer from several non-rigid motion-induced distortions arising from distortions in the imaging catheter path. To address these issues, we here present a semi-automatic segmentation-based framework for both rigid and non-rigid matching of intravascular images to CCTA images. We formulate the problem in terms of finding the optimal \emph{virtual catheter path} that samples the CCTA data to recapitulate the coronary artery morphology found in the intravascular image. We validate our co-registration framework on a cohort of $n=40$ patients using bifurcation landmarks as ground truth for longitudinal and rotational registration. Our results indicate that our non-rigid registration significantly outperforms other co-registration approaches for luminal bifurcation alignment in both longitudinal (mean mismatch: 3.3 frames) and rotational directions (mean mismatch: 28.6 degrees). By providing a differentiable framework for automatic multi-modal intravascular data fusion, our developed co-registration modules significantly reduces the manual effort required to conduct large-scale multi-modal clinical studies while also providing a solid foundation for the development of machine learning-based co-registration approaches.
translated by 谷歌翻译
The Information Bottleneck theory provides a theoretical and computational framework for finding approximate minimum sufficient statistics. Analysis of the Stochastic Gradient Descent (SGD) training of a neural network on a toy problem has shown the existence of two phases, fitting and compression. In this work, we analyze the SGD training process of a Deep Neural Network on MNIST classification and confirm the existence of two phases of SGD training. We also propose a setup for estimating the mutual information for a Deep Neural Network through Variational Inference.
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
translated by 谷歌翻译
Complex and contact-rich robotic manipulation tasks, particularly those that involve multi-fingered hands and underactuated object manipulation, present a significant challenge to any control method. Methods based on reinforcement learning offer an appealing choice for such settings, as they can enable robots to learn to delicately balance contact forces and dexterously reposition objects without strong modeling assumptions. However, running reinforcement learning on real-world dexterous manipulation systems often requires significant manual engineering. This negates the benefits of autonomous data collection and ease of use that reinforcement learning should in principle provide. In this paper, we describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks and enable robots with complex multi-fingered hands to learn to perform them through interaction. The core principle underlying our system is that, in a vision-based setting, users should be able to provide high-level intermediate supervision that circumvents challenges in teleoperation or kinesthetic teaching which allow a robot to not only learn a task efficiently but also to autonomously practice. Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples, a reinforcement learning procedure that learns the task autonomously without interventions, and experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world, without simulation, manual modeling, or reward engineering.
translated by 谷歌翻译
Legal contracts, such as employment or lease agreements, are important documents as they govern the obligations and entitlements of the various contracting parties. However, these documents are typically long and written in legalese resulting in lots of manual hours spent in understanding them. In this paper, we address the task of summarizing legal contracts for each of the contracting parties, to enable faster reviewing and improved understanding of them. Specifically, we collect a dataset consisting of pairwise importance comparison annotations by legal experts for ~293K sentence pairs from lease agreements. We propose a novel extractive summarization system to automatically produce a summary consisting of the most important obligations, entitlements, and prohibitions in a contract. It consists of two modules: (1) a content categorize to identify sentences containing each of the categories (i.e., obligation, entitlement, and prohibition) for a party, and (2) an importance ranker to compare the importance among sentences of each category for a party to obtain a ranked list. The final summary is produced by selecting the most important sentences of a category for each of the parties. We demonstrate the effectiveness of our proposed system by comparing it against several text ranking baselines via automatic and human evaluation.
translated by 谷歌翻译
Non-parametric tests can determine the better of two stochastic optimization algorithms when benchmarking results are ordinal, like the final fitness values of multiple trials. For many benchmarks, however, a trial can also terminate once it reaches a pre-specified target value. When only some trials reach the target value, two variables characterize a trial's outcome: the time it takes to reach the target value (or not) and its final fitness value. This paper describes a simple way to impose linear order on this two-variable trial data set so that traditional non-parametric methods can determine the better algorithm when neither dominates. We illustrate the method with the Mann-Whitney U-test. A simulation demonstrates that U-scores are much more effective than dominance when tasked with identifying the better of two algorithms. We test U-scores by having them determine the winners of the CEC 2022 Special Session and Competition on Real-Parameter Numerical Optimization.
translated by 谷歌翻译